Parallel Sparse Linear Algebra for Homotopy Methods

نویسنده

  • Maria Sosonkina Driver
چکیده

Globally convergent homotopy methods are used to solve difficult nonlinear systems of equations by tracking the zero curve of a homotopy map. Homotopy curve tracking involves solving a sequence of linear systems, which often vary greatly in difficulty. In this research, a popular iterative solution tool, GMRES(k), is adapted to deal with the sequence of such systems. The proposed adaptive strategy of GMRES(k) allows tuning of the restart parameter k based on the GMRES convergence rate for the given problem. Adaptive GMRES(k) is shown to be superior to several other iterative techniques on analog circuit simulation problems and on postbuckling structural analysis problems. Developing parallel techniques for robust but expensive sequential computations, such as globally convergent homotopy methods, is important. The design of these techniques encompasses the functionality of the iterative method (adaptive GMRES(k)) implemented sequentially and is based on the results of a parallel performance analysis of several implementations. An implementation of adaptive GMRES(k) with Householder reflections in its orthogonalization phase is developed. It is shown that the efficiency of linear system solution by the adaptive GMRES(k) algorithm depends on the change in problem difficulty when the problem is scaled. In contrast, a standard GMRES(k) implementation using Householder reflections maintains a constant efficiency with increase in problem size and number of processors, as concluded analytically and experimentally. The supporting numerical results are obtained on three distributed memory homogeneous parallel architectures: CRAY T3E, Intel Paragon, and IBM SP2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned Iterative Methods for Homotopy Curve Tracking

Homotopy algorithms are a class of methods for solving systems of nonlinear equations that are globally convergent with probability one. All homotopy algorithms are based on the construction of an appropriate homotopy map and then the tracking of a curve in the zero set of this homotopy map. The fundamental linear algebra step in these algorithms is the computation of the kernel of the homotopy...

متن کامل

Experiments with Conjugate Gradient Algorithms for Homotopy Curve Tracking

There are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotopy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a mathematical software package implementing glo...

متن کامل

Investigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)

Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metr...

متن کامل

1 Schur complement preconditioners for distributed general sparse linear systems ?

This paper discusses the Schur complement viewpoint when developing parallel preconditioners for general sparse linear systems. Schur complement methods are pervasive in numerical linear algebra where they represent a canonical way of implementing divide-and-conquer principles. The goal of this note is to give a brief overview of recent progress made in using these techniques for solving genera...

متن کامل

Structure-adaptive parallel solution of sparse triangular linear systems

Solving sparse triangular systems of linear equations is a performance bottleneck in many methods for solving more general sparse systems. Both for direct methods and for many iterative preconditioners, it is used to solve the system or improve an approximate solution, often across many iterations. Solving triangular systems is notoriously resistant to parallelism, however, and existing paralle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998